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Influence of correlations on molecular recognition
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The influence of the patchiness and correlations in the distribution of hydrophobic and polar residues at the
interface between two rigid biomolecules on their recognition ability is investigated in idealized coarse-grained
lattice models. A general two-stage approach is utilized where an ensemble of probe molecules is designed first
and the recognition ability of the probe ensemble is related to the free energy of association with both the target
molecule and a different rival molecule in a second step. The influence of correlation effects are investigated
using numerical Monte Carlo techniques and mean field methods. Correlations lead to different optimum
characteristic lengths of the hydrophobic and polar patches for the mutual design of the two biomolecules on
the one hand and their recognition ability in the presence of other molecules on the other hand.
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I. INTRODUCTION

An understanding of the basic principles of biomolecular
recognition, that is the ability of a biomolecule to interact
selectively with another molecule in the presence of structur-
ally similar rival molecules, is not only important from a
scientific point of view but also opens up a wide field of
potential biotechnological applications [1-3]. The recogni-
tion process itself is governed by a complex interplay of
noncovalent interactions such as salt bridges, hydrogen
bonds, van der Waals and hydrophobic interactions. The typi-
cal intrinsic energy contribution of such an interaction is of
the order of 1-2 kcal/mol and is thus only slightly larger
than the thermal energy kg7,,,m,=0.62 kcal/mol at room
temperature [4,5]. In order to stabilize a complex of two
proteins over a time long enough to ensure its biological
function, many favorable interactions have to be established
to overcome the entropic cost of the formation of the com-
plex. Therefore, the two molecules have to complement each
other at the common interface with respect to shape and in-
teraction partners [6]. This principle of complementarity is
closely related to the lock-and-key view of rigid protein-
protein recognition [7].

Molecular recognition results from an interplay of numer-
ous competing and cooperating factors. Apart from the sce-
nario of recognition between rigid proteins, recognition pro-
cesses where at least one of the biomolecules undergoes
conformational changes are also numerous in nature. Such
recognition processes are described by the induced fit
scheme [8]. To understand the recognition process in full,
one not only needs to consider the stability of a single spe-
cific complex, but also the encounter of the two biomol-
ecules in the heterogeneous environment of the cell. For ex-
ample, long-range electrostatic interactions are believed to
preorient the biomolecules so that the probability of an en-
counter of the complementary patches on the two molecules
upon collision is increased [2,9]. Another critical aspect is
the competition due to the simultaneous presence of different
molecules. The more the binding free energy between
complementary biomolecules differ from the binding free en-
ergy to other molecules the lower is the risk of misrecogni-
tion.

1539-3755/2008/78(3)/031903(11)

031903-1

PACS number(s): 87.15.A—, 89.20.—a

The recognition problem of two biomolecules shows up in
different disguises in nature. To gain insight into this prob-
lem different approaches can be adopted. A detailed model-
ing (often on an atomistic level) of the biomolecules that
form a complex gives many insights into the actual binding
process between two specific biomolecules. In drug design
docking methods allow the identification of the drug mol-
ecule with the optimum binding affinity for a known biomol-
ecule. A second way to investigate the problem of molecular
recognition is the use of coarse-grained models. The study of
idealized coarse-grained and hence abstract generic models
with methods from statistical physics seems to be particu-
larly adequate for an understanding of the basic common
physical mechanisms that govern different recognition pro-
cesses in the heterogeneous environment of a cell. The
coarse-graining approach is based on a reduction to the most
relevant degrees of freedom for molecular recognition which
helps to abstract from complications due to the intricate in-
terplay of the involved types of interactions so that the ge-
neric features nature exploits for recognition can be identi-
fied [10]. This approach has been adopted in the literature to
analyze various aspects of biomolecular binding and recog-
nition for (almost) rigid and flexible biomolecules in ideal-
ized model systems [11-19].

One popular approach to study the basic principles of mo-
lecular recognition consists in investigating the adsorption of
heteropolymers on patterned surfaces. Biomolecular recogni-
tion is then viewed in a first approximation as the adsorption
of a biopolymer on the surface of another biopolymer. One
major aspect addressed in this context deals with the ques-
tion, whether or not length scale matching on the two poly-
mers favors adsorption [20-26]. Generally speaking it was
found that the adsorption properties depend on the involved
types of correlations and that statistically structured surfaces
(be it correlated or anticorrelated ones) have an enhanced
affinity towards similarly structured chains although an exact
matching of the corresponding correlation lengths is not nec-
essary. The adsorption is followed by a second freezing tran-
sition where the flexible chain adjusts to the pattern of the
surface which necessitates a more precise matching of the
correlation lengths. Bogner et al. [16] also addressed the role
of correlations and found that biomolecular binding seems to
be strongly influenced by small scale structures suggesting
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that local structure elements are particularly important for
molecular recognition.

The present study is in some sense complementary to
those works. We investigate the influence of correlation ef-
fects on molecular recognition within coarse-grained models
that are specifically designed to model the recognition be-
tween almost rigid proteins. In particular we focus on the
role of the presence of competing rival molecules on the
recognition characteristics. In our model correlations appear
in the distribution of hydrophobic and polar residues on the
surface of a biomolecule. These correlations result in ex-
tended patches of several hydrophobic and polar residues on
the surface of the protein. The patterns of the actual target
molecule and the rival molecules thereby exhibit the same
characteristic correlation lengths. We then address the ques-
tion about the optimum correlation length of the biomolecule
that is supposed to recognize the target. All in all our analysis
shows that a matching of the patterns on the surfaces is nec-
essary to a certain degree in order to obtain optimum selec-
tivity. However, the precise way how the correlation lengths
fit to each other depends on whether or not rival molecules
are present, that is whether the isolated binding process or
whether the actual recognition process with rival molecules
present is considered. We note also that in a recent study the
effect of correlations that stem from the density of atoms on
the surface of a biomolecule was considered in the context of
connected proteins in protein interaction networks [27].

The present article is organized in the following way. In
the next section our general approach to biomolecular recog-
nition of two rigid proteins in the presence of rival molecules
is briefly sketched (for a more detailed account, see [28,29]).
In the subsequent Sec. III we discuss how correlations in the
distribution of hydrophobic and polar residues can be incor-
porated into the model. In Secs. IV and V we then investigate
the influence of sequence correlations on molecular recogni-
tion by using Monte Carlo techniques and mean field ap-
proximations.

II. MODEL AND GENERAL APPROACH TO MOLECULAR
RECOGNITION

In this work we use coarse-grained idealized model sys-
tems to investigate the recognition of two biomolecules.
Coarse-grained model systems contain a limited number of
degrees of freedom and hence the recognition problem in its
various disguises cannot be captured in its full scope. We
limit our investigations to recognition processes that belong
to the scenario of rigid protein-protein recognition and con-
sider only the stabilization of the complex. Dynamical as-
pects concerning the encounter of the two proteins in the cell
and the formation of the complex are not incorporated. The
generic model we use is built on observations of (universal)
features of rigid protein-protein recognition so that the phys-
ics which different recognition processes have in common is
captured in the model.

We apply a coarse-grained point of view on the level of
both the sequence of the amino acids on the so-called recog-
nition sites of biomolecules at the mutual interface and the
residue-residue interactions stabilizing the complex. The
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backbones of the proteins are assumed to undergo no refold-
ing during the association process. This is a justified assump-
tion for most protein-protein recognition processes, although
notable exceptions do exist [2,3,30]. Motivated by the obser-
vation that hydrophobicity is the major driving force in mo-
lecular recognition [2,9,30,31] we describe the type of the
residue at the position i=1,...,N of the recognition site by a
binary variable [28,29] where one of the two values repre-
sents a hydrophobic residue and the other one a polar resi-
due. Note, that an eigenvalue decomposition of the
Miyazawa-Jernigan matrix leads to an approximate param-
etrization of residue-residue interactions by an Ising-like en-
ergy term with discrete variables that can take on two distinct
values [32]. This gives additional justification to the use of
hydrophobic-polar (HP) models for the residue-residue inter-
actions. Denoting the type of the residue at position i of the
recognition site of one of the two molecules by o;
€ {+1(hydrophobic),—1(polar)} the residue sequence on the
recognition site with N residues is then specified by o
=(oy,...,0y). Similarly the type of residue at position i of
the recognition site of the interaction partner is specified by
0=(6,,...,6y) with 6, {=1}.

We then model the energetics at the two-dimensional con-
tact interface of the two biomolecules by

N
1+S;
H(0,6:8) =—e> — - oifi- J2S.S,, (1)

i=1 (i.j)

where the energy contributions of the contact between two
residues across the interface are summed up. The variable S;
takes on the two discrete values =1 and describes the fit of
the shape of the molecules at position i of the interface, for a
poor fit, i.e., §;=—1, we assume no contribution to the stabi-
lizing energy. The variable S models the influence of a (lo-
cal) rearrangement of the amino acid side chains on a micro-
scopic level when the complex is formed [2,9,30]. Note that
such rearrangements are observed even if the tertiary struc-
tures of the proteins remain unaltered upon complex forma-
tion. Apart from the direct contact energy with strength ¢ the
model Hamiltonian (1) contains an additional cooperative
interaction term where the quality of a residue-residue con-
tact couples to the structure in its neighborhood. This term
has the effect that a locally good fit at some position in the
interface influences its neighborhood [29].

In our idealized view of the interface each biomolecule
contributes with the same number N of coarse-grained “resi-
dues.” This assumption is questionable for real interfaces,
particularly for curved interfaces different numbers of amino
acids appear [9]. In Hamiltonian (1) a residue of one of the
biomolecules interacts precisely with one residue on the
other molecule. This simplified assumption is also not valid
for real residues, in particular as different amino acids are of
different sizes so that a large residue can interact with several
smaller amino acids. However, one can think of a general
partition of the interface in N contact patches of the same
size on each of the biomolecules where larger amino acids
contribute to several patches whereas small ones only to a
few. A value of the hydrophobicity can then be attributed to
each of the patches on the biomolecules. Within such a de-
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scription the (free) energies can be approximated by the
model (1). For the sake of simplicity, however, we stick to
the expression “residue” in the following discussions. We
also note that solvation effects at the recognition sites and the
associated entropy changes are crucial when the complex of
two biomolecules is formed [33,34]. In the adopted coarse-
grained approach, however, it is assumed that all these con-
tributions are of comparable size for all proteins under con-
sideration. Notice also that by reducing the interactions to
the hydrophobic effect solvation effects are already partially
included in HP-like models [on a formal level due to inte-
grating out the solvent degrees of freedom resulting in effec-
tive interaction constants such as ¢ in Eq. (1)].

To study the recognition process between two rigid pro-
teins we adopt a two-stage approach. For a fixed target se-
quence oV we first design an ensemble of probe molecules
6 at a design temperature 1/f8p in such a way that the
sequence 6 should optimize the interface energy. This design
by equilibration leads to the distribution P(6]oV)
=ZLDES exp(=BpH (o, 8;S)). This first step should mimic
evolutionary processes or the design of artificial molecules in
biotechnological applications. The quality of the design can
be quantified by evaluating the average (K)p(g,) of the
overlap K =E,-o-l(-‘) 6; of the sequence of the probe molecules
with the previously fixed target sequence. A large (K)p(g|4()
then signals a high complementarity of the two recognition
sites in regard to the actual recognition process of the two
proteins. Notice that (K) P(elo) 1s generally dependent on the
particular chosen target sequence o'V,

In a second step the free energy difference of association
at temperature 1/ is calculated for the interaction of the
probe ensemble with the target molecule o on the one hand
and a structurally different rival molecule o on the other
hand. In this step the free energy of the interaction

(o) = - [13 1n(2 exp(- BH(o), a;s») 2)

N

of the molecule o'?, a  {t(target) ,r(rival)}, with a particular
probe sequence 6 has to be averaged with respect to the
distribution P(6]0V) giving F'®'=(F(0]0'®))p(g,). This
leads finally to the free energy difference AF (U(‘S,U(r))=F ©
—F_ In order to value the recognition ability of the system
the free energy difference AF is then averaged over all pos-
sible target and rival sequences on their respective recogni-
tion sites,

[AFl0.0= > W)W (o)AF, (3)

O

where the W(®) denote the distributions of the sequence of
the target and rival molecules, respectively. A negative
[AF],0 .0 then signals an overall preferential interaction of
the probe molecule with the target leading to the desired
selectivity of the recognition process. In the following dis-
cussions square brackets indicate an average over all possible
target and rival sequences whereas pointed brackets denote
an average over the designed ensemble of probe molecules.

Our approach can be roughly illustrated by the techno-
logically relevant case of developing a drug molecule with a
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high affinity to a particular protein. The target molecule of
our terminology corresponds to a known protein which is
responsible for a disease, for example, with a well-located
recognition site. Our design step then corresponds to finding
the most suitable drug molecule called probe in our nomen-
clature. The subsequent testing step then models the admin-
istration of the drug to an organism where additional proteins
(rival molecules) are present apart from the known protein
the drug molecule is supposed to bind to, so that all these
proteins can compete for the drug molecules.

III. INCORPORATING SEQUENCE CORRELATIONS

In Hamiltonian (1) only the energetics of the contact in-
teractions of residues across the interface between the two
interacting molecules is taken into account. However, the
residues that constitute the recognition sites on the proteins
also interact with each other, so that different sequences re-
sult in different contributions to the total energy. Non-
covalent hydrophobic-polar contacts between neighboring
residues in the recognition sites, for example, lead to unfa-
vorable energy contributions. As a consequence patches of
several hydrophobic or polar residues are likely to show up.
Thus the probability of having a certain type of residue at
position i, say, in the recognition site depends on the type of
the residues in the neighborhood of i, so that the sequences
are correlated. Indeed the appearance of patches of residues
of a similar hydrophobicity can be observed in the majority
of protein-protein interfaces [35].

On a formal level, correlations can be incorporated by
introducing, apart from the contact energy H,, at the inter-
face, an additional correlation term H,, to the Hamiltonian.
Note that in principle correlation energies also show up in
the interior of the proteins and in turn induce correlations on
the surface of the molecules. In this work, however, we are
only concerned with the interaction between two proteins
which depends on the nature of the residues that constitute
the recognition sites. We thus do not consider these further
distributions of interior (or other surface) residues explicitly.

Focusing on the sequence 6 of the probe molecules for the
discussion we consider the following correlation energy:

Hcor == ypE aiaj - Mpz 0[~ (4)
(i) i

The first sum extends over all neighboring residues in con-
tact and hence represents the interactions due to hydropho-
bicity so that the associated parameter 7, thus controls the
corresponding (nearest-neighbor) correlations. These correla-
tion interactions lead to the formation of extended patches of
either hydrophobic or polar residues in the recognition sites.
The characteristic extensions of these patches can be inter-
preted as a measure of the correlation length Aj,. In the sec-
ond contribution the hydrophobicity of the recognition site
couples to the parameter w, which therefore controls the
overall number of hydrophobic residues. The design step
then gives the probability of a certain probe sequence 6 for a
given target sequence o'". This probability distribution for
the probe ensemble is then generally given by
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1
P(0| O-(l)) = X/- CXP(_ ﬁDHint - Hcor) (5)

where A denotes the normalization. In general this probabil-
ity depends on the particular sequence oV of the recognition
site of the given target. Note that the contributions from the
correlation energy are considered not to be subjected to ther-
mal fluctuations as only the rearrangement variable S is as-
sumed to equilibrate.

After the average over the probe ensemble has been car-
ried out the free energy difference AF(a'¥,0'") for a given
target-rival pair depends on the parameters 7, and u,. For
the final average over the possible target and rival molecules
sequences with particular correlation properties are consid-
ered. Formally the corresponding probability distributions
for a e {t(target),r(rival)} are given by

W (o) ~ exp(= Hearl o)) (6)

with associated parameters vy, for the (nearest-neighbour)
correlations and u,, for the overall hydrophobicity

H.=Nh, = [E agw] . 7
wla)

i

For the investigation of the influence of sequence corre-
lations on molecular recognition in our model we adopted
the following strategy. For a fixed pair of target and rival
sequences the probe ensemble will be generated for the pa-
rameters 7, and u,, which in turn determine the correlation
length A,. Note that the generated probe molecules are not
perfect with respect to the target molecule due to evolution-
ary processes leading to defects. Then the recognition ability
is assessed by evaluating the free energy difference
AF(0V, ™) for the given target-rival pair. This free energy
difference is then averaged over all possible target-rival
pairs, where similarly to the probe molecule the associated
parameters 7y, and w, determine the correlation lengths A,,.
By this approach the overall recognition ability [AF],« )
(Mi»Aps\p) is hence computed as a function of the correlation
lengths (and hydrophobicities) of the target and rival mol-
ecules and of the predesigned probe molecules. For given
correlation lengths A\, and A, of the target and rival mol-
ecules, respectively, the correlation length A, of the probe
molecules is then varied to find the optimum recognition
ability.

IV. UNCOOPERATIVE MODEL

The interaction energy (1) at the interface between the
two proteins comprises apart form the direct contact contri-
butions due to hydrophobicity additional cooperative terms
where the rearrangements of neighboring amino acid side
chains couple to each other. In this section we set the corre-
sponding interaction constant J to zero and consider only the
direct hydrophobic energy contributions. The total Hamil-
tonian for the interface energy between a molecule with the
sequence o and the probe molecule 6 thus reads
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1
H(O’, 07S) = 7_{int + EHcorr

Yl+s
——0,6;- Ly 0:6; - By 0;.
-1 2 B iy ;

=—¢&

(8)

As the interaction variable S; at position i does not couple to
the variables at other positions j i of the interface the cor-
responding thermal average can be carried out resulting in an
effective Hamiltonian that depends only on the sequence
variables any more. Including the contributions from the cor-
relation energies it is given by

&
Heplo,60) =— 52 0,6, - %2 6,60, - Eo 6, + const.
i (i.j) i

)

Here we have used the fact that cosh(Bea;6;)=cosh(Be) for
all choices of o; and 6;. The constant in Eq. (9) is tempera-
ture dependent, however, as we are only concerned with the
effect of correlations on the molecular recognition ability, we
fix the temperature and thus can omit the constant. The free
energy for the interaction between the sequences o and 6 is
F(6|0)=-53,0; t9,~+éHcor( 0) and can now be averaged over
the possible probe sequences that are distributed according to
the probability P(6] V) ~exp(—BH.z(oV, ). Note that the
design might be carried out at a temperature B which is
different from the temperature B at which the selectivity is
determined. However, we are not interested in the effect of a
temperature variation in this work and therefore choose Bp
=f3. The correlation energy H., does not explicitly depend
on the sequence o!® and hence when computing the free
energy difference between the interaction of the target mol-
ecule with the probe ensemble on the one hand and the in-
teraction of the rival molecule with the probe ensemble on
the other hand these correlation contributions cancel and one
ends up with

&
AF(0,0") == 23 (0] = o X Opgoy.  (10)

The free energy difference is hence determined by the differ-
ence of the complementarity of the probe ensemble with the
target sequence on the one hand and the complementarity of
the probe ensemble with the rival sequence on the other
hand. Note also that the free energy difference exhibits a
dependence on the correlation parameters 7, and wu, (which
enter the distribution P and hence influence the average hy-
drophobicity at position i of the recognition site of the probe
molecule) and thus on the correlation length \,,.

To assess the overall recognition ability the free energy
difference (10) has to be averaged over all target and rival
sequences which are distributed with respect to Eq. (6) with
correlation Hamiltonians of the form (4). As the target and
the rival sequences are independent of each other, the aver-
aged free energy difference is therefore given by
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€ €
[AF] == 2 [01%(0)pigotonlwo + SNy loh, (1)

t] &
== E[<K>P(0|<r(‘))]w(t) + EN[hp]Wmhr (12)

in terms of the complementarity of the probe ensemble and
hydrophobicities 4, and h, of the probe and rival molecule,
respectively. The second term originates from the interaction
of the probe molecules with the rival molecule. It is only
determined by the respective hydrophobicities of the mol-
ecules and is independent of the structure elements related to
the hydrophobic and polar patches of the recognition sites.
Note that the hydrophobicity 4, hinges on the sequence of
the target molecule. The first term stems from interactions of
the probe molecule with the target molecule. This term de-
pends sensitively on an appropriate matching of the structure
elements on the recognition sites and is hence directly influ-
enced by correlation effects in the corresponding distribu-
tions of the hydrophobicity.

In the following sections we use two methods to carry out
the remaining averages in Eq. (12), namely numerical Monte
Carlo techniques and a mean field approximation. Larsen et
al. reported that basically two types of interfaces appear in
protein-protein complexes [35]. In the minority of complexes
the interface has a hydrophobic core which consists of a
single large patch and which is surrounded by a rim of polar
interactions with residual accessibility by solvent molecules.
For the majority of complexes, however, the interface is
made up by a mixture of small hydrophobic patches and
polar interactions. We thus focus in the following discussions
only on the situation where the correlation lengths of the
target and rival molecule, respectively, are relatively small
compared to the extension of the interface.

A. Numerical results

The remaining averages in expression (12) of the free
energy difference—first over the probe ensemble with the
distribution P(6| V) and then over the target sequences with
the distribution W—can be carried out numerically by
means of Monte Carlo methods. For a given target and rival
sequence the quantities of interest (averaged complementar-
ity and free energy difference as a measure for selectivity)
are computed first. Then the final average over the target
sequences with fixed parameters 7y, and w, (and hence fixed
correlation length A\, and hydrophobicity A,) is evaluated. As
we are interested in the recognition ability of the system if
the rival molecule is structurally very similar to the target
molecule, the same correlation parameters are used for the
average over the rival sequences and thus one has in particu-
lar h,=h,.

The probe molecules are designed for different correlation
parameters 7,. The probe sequence is optimized with respect
to the target sequence, thus we do not further restrict the
hydrophobicity and therefore set u,=0. The correlation pa-
rameter 'y, can therefore be directly converted into the cor-
relation length \,. The (pseudo) correlation length for recog-
nition sites of a finite extension is computed to be the
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average size of clusters that are made up of neighboring resi-
dues of the same type. In the following figures the shown
correlation length N, is normalized in such a way that its
maximum possible value is one for a system where the
whole recognition site is made up of precisely one cluster
with either hydrophobic or polar residues.

Alternatively the correlation length of a finite system can
be defined by the second moment of an (appropriately nor-
malized) correlation function [36]. However, both definitions
lead to the same qualitative behavior of the correlation length
as a function of the varying correlation parameters. The cor-
relation length increases monotonically as a function of the
correlation parameter 7, and saturates for sufficiently large
values. Note also that in [37] the correlations on a finite
surface where measured by a so-called patchiness which was
defined to be basically the (suitably normalized) expectation
value of the correlation energy 26,6, in terms of our nota-
tion and convention.

For simplicity the systems considered for the Monte Carlo
simulations are of regular rectangular geometry and contain
between 64 and 256 spin variables. Note that real recognition
sites contain typically 30-40 residues, however, up to minor
finite-size effects we find the same qualitative behavior for
systems of different sizes. As indicated in the introduction
the energy contribution & of a non-covalent bond is only
slightly stronger than the thermal energy at physiological
conditions. We therefore typically choose Be=O(1). In the
following results we discuss the system with Be=1 if not
stated otherwise.

Consider a system with targets and rivals whose correla-
tion length is relatively small so that the recognition sites
consist of a relatively large number of rather small hydro-
phobic and polar patches. We investigated systems with hy-
drophobicities ranging from #,,=0.0 to h,,=0.5 and correla-
tion lengths between \,,=0.2 and \,,=0.35 (note that the
uncorrelated system with 7,,=0.0 corresponds to a correla-
tion length larger than the minimum length A\,,=1/L for a
system with linear extension L due to finite size effects). For
all the systems we find the same qualitative behavior, we
therefore discuss exemplarily the system with L=16 and
Ayr=0.263 in the following.

In Fig. 1 the average complementarity of the designed
probe molecules is shown as a function of varying correla-
tion length A, of the recognition site of the probe molecules
for different hydrophobicities of the target molecules. It has
to be noted first, that the complementarity (as well as the
selectivity, which is discussed below) is first enhanced by
increasing correlations, reaches an optimum and finally de-
creases again. The probe molecules are expected to have a
maximum complementarity if the patches of hydrophobic
and polar residues on the target are matched by correspond-
ing patches on the probe. However, the optimization of the
probe ensemble is carried out at a finite temperature and
therefore thermal fluctuations limit the complementarity due
to defects in the distribution of the interaction partner as the
patches fray out at their boundaries. The position of the
maximum of the average complementarity, that corresponds
to the optimum choice of the correlation length of the probe
molecules, is shifted to slightly larger values compared to the
fixed correlation length of the target molecule. This signals
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FIG. 1. Average complementarity of the probe ensemble with
Be=1 as a function of the correlation length for targets with differ-
ent hydrophobicities (solid lines, from top to bottom, #,=0.5, 0.4,
0.3, 0.2, and 0.1, the curve for #,=0.0 is not shown as it is hardly
distinguishable from the one with /#,=0.1 in the displayed range of
;). The correlation length of the targets is fixed to the value indi-
cated by the black circle (\;=0.263, corresponding, e.g., to ¥
=0.4 for h,=0.0). The optimum of the complementarity is slightly
shifted to larger correlation lengths on the probe molecule. For the
dashed curves Be=1.5 and 2.0 (from the bottom up), again with
h=0.5.

the fact that a slightly larger correlation length compensates
the appearance of defects in the boundaries of the patches
during the design step and thus increases the complementa-
rity. This effect is less pronounced if the temperature is de-
creased as defects appear more seldom. Notice also that the
average complementarity tends to the fixed hydrophobicity A,
of the target in the limit A, — 1 as in this case the recognition
site of the probe is made up of hydrophobic residues only
(compare Fig. 2).

For the uncooperative model (1) of the direct contact en-
ergy at the interface between the biomolecules the free en-
ergy difference is determined by the difference in the

08
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FIG. 2. The complementarity [(K)]/N and the free energy dif-
ference [AF]/N as a function of the correlation length of the probe
molecules. The correlation lengths of the target and rival molecules
are fixed to the value shown by the circle (\;=\,=0.263), the cor-
responding hydrophobicities are h=h,=0.5 (solid line) and 0.4
(dashed line). Compared to the optimum for the design of the probe
molecules, the optimum of the recognition ability is clearly shifted
to smaller values of the correlation length on the probe molecule
(optima indicated by arrows for 4,=0.5). Additionally, the comple-
mentarity of the probe ensemble with respect to the rival molecules
is shown for h,=0.4 (dotted line). Notice that the system for the
shown data has a linear extension L=16 and hence the minimum
possible correlation length is A,~0.06, the uncorrelated system
with ,=0 has \,=~0.16.
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FIG. 3. (Color online) Distribution of the complementarity of
the probe ensemble with respect to the target molecules (solid line)
and the rival molecules (shaded curve) for different correlation
lengths on the recognition site of the probe molecules. On the left
hand side the correlation length A,=0.25, on the right-hand side
A,=0.75. The hydrophobicities of the target and rival molecules are
h=h,=0.4, the correlation lengths are \;=\,=0.263 in each case.

complementarity of the probe ensemble with respect to the
target molecules and the rival molecules, respectively [com-
pare relation (10)]. In Fig. 2 (upper part) the complementar-
ity with the rival molecules is shown in comparison with the
one with respect to the target as a function of the correlation
length A,. The probe ensemble is always more complemen-
tary to the target, with respect to which it has been optimized
during the design step. For an increasing correlation length
on the probe molecule the complementarity with respect to
the rival sequence is increased until it finally reaches the
maximum possible value for A, — 1. In this case the probe is
not structured any more and hence cannot discriminate be-
tween different sequences any more. In Fig. 3 the distribu-
tion D(K) of the complementarity parameter with respect to
the target and with respect to the rival molecules (averaged
over all target and rival sequences) are compared for two
different correlation lengths. For probe molecules with small
structure elements with a characteristic length in the proxim-
ity of the optimum value the two distributions are well sepa-
rated and hence the probe can discriminate the two mol-
ecules. For increasing correlation length and hence
diminishing structuring of the probe molecules the two dis-
tributions approach each other and therefore selectivity is
decreased. This comes along with a broadening of the distri-
butions when going away from correlation lengths that cor-
respond to the optimum conditions for the selectivity. For
A,—1 to two distributions become eventually identical.
Similarly, the two distributions are converging towards each
other when the correlation length is decreased to the mini-
mum possible value.

Figure 2 shows the free energy difference of the interac-
tion of the probe molecules in a system with target and rival
molecules, again as a function of the correlation length of the
probe molecules. Note that the hydrophobicity £, in Eq. (12)
exhibits a dependence on A,. For A\, — 1 the free energy dif-
ference has to vanish as the probe molecule consists only of
amino acids of the same class in this case and hence it cannot
distinguish on average between different sequences any
more. The minimum of the free energy difference corre-
sponds to a system with optimum recognition ability. The
numerical results show that for recognition sites of the target

031903-6



INFLUENCE OF CORRELATIONS ON MOLECULAR ...

T R ‘//,
0.06 oo’ 1
o //; °
o
o 9®
<0.04f o
<4 . ° o/.’ o
o9
o ;° °
0.02 o /Qf" 1
oo ot
o
0 €1 ° I I I I
01 02 03 04 05

FIG. 4. The shift of the optimum value of the correlation length
for the recognition ability compared to the optimum value for the
complementarity as a function of the hydrophobicity of the target
(note that h,=h,). Instead of error bars some of the results from the
Monte Carlo runs (open circles) are shown together with the results
of the analysis of the data (full circles). The dashed curve is a
quadratic fit to the data (see discussion in Sec. IV B).

with an excess of hydrophobic residues the optimum of the
recognition ability is clearly shifted to smaller values of the
correlation length compared to the appearance of the opti-
mum in the design of the probe molecules. The reason for
this shift lies in the fact that the structure elements of the
recognition sites influence the contributions of the target-
probe interactions to the free energy difference whereas the
rival-probe interactions do not feel these structure elements.
A smaller correlation length implies the appearance of an
increased number of smaller patches on the recognition site
of the probe molecule and hence an entropic benefit for the
interaction with the target due to more possible ways to align
each other favorably. This effect does not contribute to the
free energy for the rival-probe interactions as it is insensitive
to a matching of structure elements [compare relation (12)
and the discussion there]. The emergence of the shift of the
optimum correlation length also means that the design of the
probe molecules has not to be carried out as effectively as
one might expect naively. Therefore the system is at liberty
to carry out the design not at the possible optimum way
without losing the optimum recognition ability.

Interestingly this shift of the optimum correlation length
depends on the value of the hydrophobicity of the target and
rival molecule. Figure 4 shows that the shift vanishes for
recognition sites with the same number of hydrophobic and
polar residues [as is clear from relation (12)] and increases
with increasing hydrophobicity. Note that in nature recogni-
tion sites with different hydrophobicities show up for pro-
teins with different biological function. In enzyme-inhibitor
complexes one typically finds largely hydrophobic interfaces
whereas the hydrophobicity in antibody-antigen interfaces is
significantly lowered [9,30].

Although the recognition sites in real systems show al-
ways extended patches of either hydrophobic or polar amino
acids [35] we briefly discuss systems where no nearest-
neighbor correlations appear in the distribution of the resi-
dues on the target and rival molecule. As a consequence the
recognition site is rather diffuse on average concerning the
distribution of hydrophobic and polar residues. The hydro-
phobicity of the corresponding recognition sites is neverthe-
less fixed to a certain value and the correlation length due to
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FIG. 5. The complementarity [(K)]/N and the free energy dif-
ference [AF]/N as a function of the correlation parameter y, and of
the correlation length A, respectively, of the probe molecules. The
correlation parameters of the target and rival molecules are set to
zero, the corresponding hydrophobicities are fixed to the values A,
=h=0.5 (solid curve), 0.25 (dashed line), and 0.0 (dotted line). The
free energy difference has an optimum for the correlation parameter
% =0.0, the optimum complementarity, however, is shifted to larger
values.

nearest-neighbor correlations is varied on the recognition site
of the probe molecules to find the optimum selectivity. The
results for different hydrophobicities are depicted in Fig. 5.
The correlation parameter at which the optimum comple-
mentarity of the probe molecules with respect to the target
molecules shows up depends on the hydrophobicity of the
target and is shifted to values larger than zero for positive
hydrophobicities. In this case the probe molecules prefer a
correlated, i.e., patch-structured surface although the target
surface is uncorrelated and thus unstructured. The free en-
ergy, on the other hand, has always its optimum for uncorre-
lated probe molecules. So again the design need not be car-
ried out in the optimal way, but correlations will not enhance
selectivity as in the case of correlated targets and rivals.
Finally we compare our results to the findings of the work
by Lukatsky and Shakhnovich who investigated the influence
of correlated density distributions at the interface between
biomolecules [27]. From their study they deduced that the
presence of correlations is a basic principle for recognition
between proteins and lead to an enhanced probability to find
such interfaces as hub-hub interactions in protein-protein
networks. In our work we consider correlations in the distri-
bution of hydrophobic and polar residues within the surface
of the biomolecules. We basically reach the same conclu-
sions as Lukatsky and Shakhnovich. The corresponding cor-
relations lead to lower binding energies for moderately cor-
related interfaces as is indicated by the increase of the
averaged complementarity as shown in Figs. 1 and 2. This
points to a universal importance of (different) correlation ef-
fects to ensure the necessary specificity of recognition pro-
cesses. Our approach contains an additional design step
where the two recognizing proteins are optimized with re-
spect to each other. Note that the expression “design” has
been used in [27] to refer to the emergence of correlations.

B. Mean field approximation

The averages in expression (12) of the free energy differ-
ence cannot be evaluated analytically, however, progress can
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be made by applying a mean field approximation. Introduc-

ing the variable ki=ﬂ+§(r§‘) the effective Hamiltonian that
describes the distribution of the sequence of the probe mol-
ecules after the design step has been carried out is given by

Heff(a(‘),0)=—192 ‘91'0]'—2 k;0;, (13)

B (i) i
dropping an irrelevant temperature-dependent constant. The
variable k; can be interpreted as a random variable whose
probability is determined by the distribution W of the target
sequence. The system can therefore be viewed as a random
field Ising model. The mean field treatment in the form of the

equivalent neighbor approximation amounts to replacing H g
by

HME(G0 g = o (S V2 S g 14
eff (0- ) 2NB ; i ; iYi ( )

The expectation value (6;)p(g ) in Eq. (11) is then given by
the derivative

14

———Gyg 15
N(?kl eff ( )

(6) P(6loV) =

where the effective free energy G,y is related to the Hamil-
tonian HMP b
eff y

1
Gep=— E In Z g (16)

with Z=2 exp(—,BHS}/le)). The effective partition function
Z.g¢ can be calculated in the large N limit by first using the
identity

a , e Na Na
exp| 5 x| = dy 27 P\ =Y +axy| (17)

o0

(with @>0), so that the variable x:=X,6; appearing quadrati-
cally in the Boltzmann factor of Z is linearized and hence
the summation over € can be carried out. The price to pay for
this linearization is the introduction of the auxiliary variable
y. Omitting irrelevant prefactors the effective partition func-
tion is then given by

400
Legr ~ f dy exp(NA(y,k)) (18)
with the argument
1
Ay ==+ = Incosh(yy + ) (19)
i

where k denotes the configuration (k;, ...,ky). The Laplace
method allows an asymptotic evaluation of Eq. (18) in the
large N limit leading to

Y
Ger=NA(yo,k) == N-Pyg+ 2 In cosh(yvo + k)

(20)

with the so-called mean field y, determined by the saddle
point equation
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1
Yo= X/E tanh(y,yo + Bk;). (21)

Note that the mean field depends explicitly on the sequence
o' of the recognition site of the target. Having computed an
expression for the effective free energy G4 one can now
calculate the desired average

14 Be
<9i>P(0|u(l)) =- ]T]a_kiGeff: tanh( YoYot+ Mpt 70’51)) .

(22)

Additionally one has 2 6;)p¢|,)=Ny, so that the mean field
gives the expectation value of the hydrophobicity of the
probe ensemble. The free energy difference (12) is then gen-
erally given by

£ e
AF=- E|:E oV tanh( YoYo+ iy + %0’5”)]
i wit)

e
+ ENhr[yO]W(‘) (23)

where averages over the target and the rival sequences still
have to be carried out.

Starting from expression (23) these averages can be car-
ried out numerically. The mean field y,, that is determined by
the saddle point equation (21), explicitly depends on the tar-
get sequence o'V and hence one has of the order of ¢V saddle
point equations for a system with N residues. A particular
configuration oV, however, contains 3™ hydrophobic resi-
dues and 3 polar ones. For such a configuration the saddle
point equation is given implicitly by the equation
5 e

tanh Ee
Y anh| y,yo + up, + >

y0(2(+)’2(—)) —

S Be
+ 7 tanh YpYo+ Mp— ? . (24)

and hence the mean field depends only on the numbers
(2®,3) for a given configuration. This observation dras-
tically reduces the number of saddle point equations. The
remaining equations can be solved using computer algebra
programs, the average with respect to the distribution W
can be carried out afterwards. A distribution W of the form
(6) can be expressed in terms of the density of states
Q(E®, 30 E) specifying the number of target configura-
tions that are compatible with the macroscopic parameters
3™, 30 and E, where E denotes the correlation energy. For
fairly small systems this density of states can be calculated
exactly by suitable enumeration algorithms [38], for large
systems effective Monte Carlos techniques can be applied
[39-41].

The mean field treatment reproduces the qualitative re-
sults of the numerical investigations discussed in Sec. IV A.
For instance, the complementarity of the probe ensemble and
the free energy difference as a measure of the recognition
ability of the probe-target system in the presence of a rival
molecule can now be worked out as a function of the corre-
lation parameter y,. Again a characteristic shift of the opti-
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mum correlation parameter and hence correlation length for
the two quantities can be observed in accordance with the
above discussed numerical Monte Carlo findings.

The mean field result can be used to consider the case of
a small correlation parameter 7, (with w,=0) in more details.
The implicit saddle point equation (24) can be expanded into
a power series in 7, and solved up to order 712,. This gives

Yo=hdA+ vhB+ %C, (25)

with the numerical constants being A=tanh(Bg/2), B
=tanh(Be/2)sech?(Be/2), and C1=B[ht—hfsinh2(ﬁs/2)].
Note that y, still depends on the particular sequence oV of
the target through the dependency on the hydrophobicity 7,
=h(0W)=1/NZ;0"=(2SW-N)/N. Using Eq. (25) the
complementarity of the probe ensemble averaged over all
possible target sequences can be computed up to order )/12)
giving

1
LB pao0)Iwo = A + Y[h{1B + %[h1C,.  (26)

with C,=B[1-sinh?(Be/2)]. The complementarity is deter-
mined in this limit by the second moment of the hydropho-
bicity distribution of the target molecules and hence directly
feels the structure of the hydrophobic and polar patches on
the recognition site of the target. For sufficiently large Se
this expression has a maximum at a correlation parameter
vk=—B/(2C,). Note that the position of the maximum is
independent of the properties of the distribution W of the
target sequences in the considered situation of a small corre-
lation parameter for the probe molecules, in particular it is
independent of the chosen hydrophobicity of the target mol-
ecules. The numerical Monte Carlo data shown in Fig. 1
seem to be in accordance with this observation—the data is
shown as a function of the correlation length, the maximum
shows up at a fairly small correlation length and hence a
small correlation parameter. The position where the maxi-
mum appears is shifted to smaller values of the correlation
parameter and thus correlation length for increased SBe. This
is again confirmed by the numerical data in Fig. 1. Similarly
the free energy difference can be worked out as a second-
order Taylor polynomial in 7,. It shows a minimum at a
correlation parameter . The shift Avy,=7yx— 7y can be ex-
pressed in terms of the moments of the distribution of the
hydrophobic residues on the recognition sites of the target
and the rival molecules, respectively,

__BUA-ThkD) | B
T e - ) 20,

(27)

Note that C; depends on [A]. For the special case where the
two types of molecules exhibit the same distribution one has
[h]=[h.]=[h]. The shift is then dominated by Ay,~[A]* in
the asymptotic limit of small values of the hydrophobicity
[h]. Assuming a linear relation between the correlation
length A, and the correlation parameter 7, in the parameter
range where the shift appears—an assumption which should
be valid if the shift is small—one also has AN,~[h]*. The
numerical Monte Carlo data in Fig. 4 are consistent with this
observation, although it should be stressed that the quality of
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the shown numerical data is not good enough to deduce re-
liable quantitative statements.

The mean field treatment has been used in this section to
obtain an expression for the dependence of the shift of the
optimum correlation lengths for the complementarity and the
selectivity as a function of the hydrophobicity of the target
and rival molecules, respectively. To this end, an expansion
in the correlation parameter Y had been carried out, subse-
quently an average over the correlated target and rival mol-
ecules was performed. The coefficients of the series in 7,
therefore basically depend on the moments of the hydropho-
bicity distribution of these molecules. It has to be noted in
this context that the power series in 7, is only an asymptotic
one as for the limit y,—0 the Hubbard-Stratonovich trans-
formation (17) cannot be applied. Nevertheless, the mean
field treatment gives reasonable results for the system with
correlated target and rival molecules as the optima of the
complementarity and the selectivity show up at nonzero val-
ues of the correlation parameter ,. In the case of uncorre-
lated target and rival molecules, however, this is not the case
(compare Fig. 5) and thus the mean field treatment in the
discussed framework is not applicable.

V. MODEL OF DOMINANT COOPERATIVITY

In the previous section the constant J of the cooperative
interaction term in Eq. (1) has been set to zero so that only
the direct contact interactions due to the hydrophobic effect
contribute. In this section the influence of these additional
terms is taken into account. This is done by considering the
case where the cooperative interactions dominate over the
direct contact interactions. In [29] it has been argued that the
Hamiltonian can be approximated by

1

Hinlo, 0;5) =—
1nt(U s) € 5

L
S

2 ag; 91', (28)

i=1

in this case with the new (global) interaction variable s tak-
ing on the two possible values 1. Summing out the variable
s and dropping irrelevant constants one ends up with the
effective Hamiltonian

1
Hop=— EE 716~ 5 ln cosh(%; a,-e,) (29)

for the sequence 6 of the probe molecule interacting with a
molecule whose sequence at its recognition site is specified
by o. Incorporating the correlation terms (4) the two stage
approach to calculate the recognition ability for a system
with particular sequences for the target and rival molecules
can be carried out. The free energy difference for the inter-
action of the probe molecules with the target and the rival
molecules, respectively, is then given by

i

[AF]=- §[<E a'gt) 0,-> ] + %N[hp]w(n)hr (30)
P(0leV) | i)
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FIG. 6. The complementarity [(K)]/N and the free energy dif-
ference [AF]/N of the system with dominant cooperative interac-
tions as a function of the correlation length of the probe molecules.
The correlation lengths of the target and rival molecules are fixed to
the value shown by the circle, the corresponding hydrophobicities
are h,=h,=0.5 (solid line) and h,=h=0.0 (dashed line). The opti-
mum correlation length for the recognition ability is clearly shifted
to a value below the optimum value for the design of the probe
ensemble for the interface with nonzero hydrophobicity.

1
-—|(In cosh(@z oV 0,-)
B 25 P(6lo) | wv

1
+—[{In cosh(%z o-ﬁr) 9,-) .
B i P(8l09) | i) o)

(31

The remaining averages in this expression of the free energy
difference can again be worked out by means of Monte Carlo
simulations. In Fig. 6 the complementarity of the probe en-
semble together with the free energy difference is depicted as
a function of the correlation length of the probe molecules.
Again the hydrophobicity of the target and rival molecules is
fixed, the hydrophobicity of the probe ensemble is unre-
stricted (i.e., u,=0) and adjusts itself during the design step.
The data reveal again a shift in the optimum correlation
length for the recognition ability compared to the optimum
value for the complementarity, although this shift is some-
how less pronounced compared to the model with J=0. Thus
the findings for the uncooperative model are reproduced
qualitatively for the model with additional cooperative inter-
actions. Nevertheless a minor difference is visible. Whereas
the optimum correlation length with respect to the comple-
mentarity of the probe molecules is clearly shifted to a larger
value compared to the fixed correlation length of the target
molecule in the case of the uncooperative model (compare
Fig. 1), the optimum appears (within the accuracy of the
numerics) at the same correlation length for the model with
dominant cooperativity. This is due to the fact that the coop-
erative interactions lead to the formation of extended patches
of good contacts [29] and thus to an effective reduction of
the appearance of defects in the design step, which can also
be seen from the fact that the average complementarity at the
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FIG. 7. (Color online) Distribution of the complementarity of
the probe ensemble with respect to the target molecules (solid line)
and the rival molecules (shaded curve) for different correlation
lengths on the recognition site of the probe molecules within the
model of dominant cooperativity (28). On the left-hand side the
correlation length N\;=0.25, on the right-hand side A,=0.75. The
hydrophobicities are h,=h,=0.4, the correlation lengths of the target
and rival molecules are \,(=\,=0.263 in each case.

optimum correlation length is larger for the cooperative
model (see Figs. 1 and 6). Thus defects need not be compen-
sated by slightly extending the size of the hydrophobic and
polar patches due to correlation effects.

As in the case of the uncooperative model (8) the distri-
bution function of the complementarity parameter of the
probe ensemble with respect to the target and rival mol-
ecules, respectively, can be investigated. The corresponding
curves in Fig. 7 reveal that one ends up with the same quali-
tative results as in the case of the uncooperative model. Note
that the two distributions are well separated from each other
and that the distribution of the complementarity with the
target molecules is fairly narrow for the correlation length
that corresponds to a large complementarity and selectivity.
The width of the distribution of the complementarity with the
target is fairly reduced compared to the width of the distri-
bution for the uncooperative model (compare Fig. 3).

In principle the same numerical analysis of the recogni-
tion ability can be carried out for arbitrary values of the
cooperative interaction constant J in Eq. (1) although in this
case an expression such as Eq. (30) for the free energy can-
not be worked out and thus the numerical effort is much
increased. The free energy can be computed, for example,
from the density of states that can be evaluated by means of
suitable Monte Carlo methods [39-42]. As we expect the
qualitative physical behavior not to change, we do not pro-
ceed with such systems in this work.

VI. SUMMARY AND OUTLOOK

In previous studies we developed coarse-grained lattice
models to analyze statistical properties of molecular recog-
nition processes between rigid biomolecules such as proteins
[10,28,29]. The general approach consists of two stages,
where a design of probe molecules with respect to a given
target molecule is carried out first. Afterwards the recogni-
tion ability of the probe molecules in an heterogeneous en-
vironment with rival molecules is evaluated. Note that the
design step is carried out in absence of rival molecules
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whereas the testing step includes rival molecules that are
structurally different from the target, but compete with them
for the probe molecules. In the present work we extended our
previous models and incorporated sequence correlations into
our coarse-grained Hamiltonian of the interactions across the
interface of the two proteins. These correlations affect the
distribution of hydrophobic and polar residues on the sur-
faces of the proteins. We investigated the extended models
by numerical Monte Carlo simulations and by mean field
methods. Both approaches lead to the same qualitative re-
sults. In particular we computed the correlation length at
which the optimum of the complementarity of the design
step appears. The free energy difference that specifies the
selectivity of the target-probe interaction in the presence of
rival molecules, shows an optimum at a correlation length
that is different from the one corresponding to the optimum
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of the design step. This shift opens up the opportunity to
carry out the design slightly away from the optimum possible
way without losing selectivity. This might be relevant in the
context of harmful effects due to point mutations during evo-
lution which our design step is intended to mimic. In prin-
ciple it should be possible to check the appearance of two
different correlation lengths for the recognition sites of the
two proteins that form a complex from experimental struc-
tural data. However, we do not know of a corresponding
study of this issue.
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